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. _ TECENICAL NOTE NO. 1347

CRTTICAL COMBINATIONS OF SHEAR AND  LONGITUDINAL DIRECT
STRESS FOR LONG PLATES WITH TRANSVERSE CURVATURE

By S. B. Batdorf, Murry Schildcrout, end Menuel S'Eein
SUMMARY

A theoretical solution is presented for the buckling stresses
of long plates with transverse curvature loaded in shear and longl-
tudinal direct stress. The thecrstical critical-gtress combinations .
for plates having elther simply supported or clamped edges are given
in figures and tables and a comparison is mede with a previous theo-
retical solution for simply supported pletes.

In the compression renge theoretical curves are unsuitable for
use in design because long plates with substantial curvature loaded
in axial compression buckle at stresses that are much less than the
theoretical values of critical stress. An investigation was thers-
fore made to determine the modlfications required to make the theo-
» retical curves competible with the avallable experimental data for

plates in axial campression. Interaction curves based upon this
investigation are provisionally recommendsed for use in design. Both
theoretical and. suggested design curves are.essentially parabolas,

a circumstance which permits simple approximate interaction formulas
to be glven.

INTRODUCTION

Theoretical solutlions to & nuuber of problems concerned with

the determinatlon of the critical stresses which cause long curved
Plates to buckle have been presented in varlous investlgations. In
references 1 to 3 shear alone acting on both simply supported and
clamped plates is investigated} in references 4 and 5 direct axial

- compression. alone acting on both simply supported and clamped plates
is investigated; and in reference 6 the-critical combinations of
shear and d.:Lract. axiel stress for simply supported. plates only are

’ given.

The present paper deals 'with the determination of the combiné-
tions of shear and direct axial stress -which cause plates with either



2 - : © © NACA TN No. 1347

simply supported or clamped edges to buckle (appendix A). The
present solution as well as the solutions of refersdhces 1 to 6 is
based upon the small-deflection theory. As curved plates loaded in
axial compression may buckle at a stress much less than the theo-~
retical value, the theoretical interaction curves of reference 6 and
the present paper must be modified in the compression rangs for use
in design.

An investigation was therefore made of avallable experimental
data on tho critical stresses of long plates with transverse curva-
ture loaded in axial compression (appendix B}, and approximate inter-
actlon curves lncorporating these results were developed and are
provisionally reccmmended for design purposes. The results of the
present enalysis are glven in the form of tables, interaction curves,
and formulas. - : .

SYMBOLS
b width of plate
m, n, j Integers
r radiuve of curvature of pléte_
% thickness of plate
u ' displacement of point on median surface of plate in axial
: (x-) direction '
v : displacement of point on median surface of plate in cilrcum-
ferential (y~-) direction
W displacement of point on medlan surface of plate in radial
dlrectionj positive outward -
x axlal coordinate of plate
¥y _ circumforential coordlinate of plate
_ 53
D - -flexural stiffness of plate per unit length [——————rt
: . 12(1 - 1?)
B Young's modulus of elasticity

Q methematical operator defined in appendix A
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be,{ 2 b\ ,’
curvature parameter | —-\f1 - = ox’ (-r—> L \jL - pe
t

rt
coefficients of deflection functionse -,
. _ kéngD
shear-stress coefficient appearing in equation T = 5
bt

direct-axial-strese coefficient appearing in equa-

kxﬂzD ..

b2t

tion Oy =

dlagonal element in stebility determinant

theoretical shear-stress ratio (ratio of shear stress
present to theoretical critical shear stress in absence
of other stresses)

empirical direct-axial-stress ratio (ratio of direct
axial stress present to empirical critical direct
dxial stress in absence of other stresses)

theoretical direct-axial-stress raetio (ratio of dirsct
axial stress present to theoretical dilrect axlal stress
in absence of other stresses)

deflection functions defined in appendix A

half wave length of buckles in axial direction

_‘Poisson's ratio

direct axial stress in plafe

shear stress in plate
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L L by
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ah &E P oyt
v'lF = ‘inverse of V}", defined by v'l‘(vl‘vr) =W

RESULTS AND DISCUSSION

Thooretical results.- The combinations of sghear and axial stress
which cause long plates with trensverse curvature to buckle may be
obtained from the eguations -

T = .1-%—1-‘..22 )
b2t o -
Ky %°D
O'x =
b2t

when the stress coefficients 'ks-.and ki are knowq. The theo-

retical combinations of stross coefficients for plates with simply
supported edges and clamped edges are given br the interaction curves
of figures 1 and 2, respectively. In these figures, the dashed curves
for Z =0 ars flat-plate solutions obtained from reference 7.

In figures 1 and 2 interaction curves are presented for various
values of the curvature parameter Z wup to 30. The interaction
curves are very nearly parabolas passing through the points giving
" the critical stress coeéfficionts for shear alone and for axial stress
alone. These stress coefficients for any value of 7 may be obtained
from the theoretical curves of figures 3 and 4, which incorporate
results derived in reference 3 and in appendix A of the present
paper. Additional calculations made for curved plates both with
gimply supported asnd with olamped edgss indlcate that Ffor all values
of Z wup to at least 1000 the interaction cudves continue to be
approximately parabolas (computed valuss given in table 1). These
results are confirmed for simply supported plates by the results
given in reference 6.

Emplrical results and design curves.- Reference & shows that
curved plates in shear buckle at stresses close to the theorstical
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critical stresses. Plates of moderate or high curvature in axial
compression, howsver, buckle at stresses much less than the theo-
retical critical stresses. (See references 9 to 11.) The theo-
retical interaction curves are therefore seriously unconservative
for plateg of moderate or high curvature when appreciable ccmpression
is present and sre thus unsultabls for use in the design of such
Plates. This discrepancy between the actusl and the theoretical
compressive stresses is belleved to be due to nonlinear effects which
are not accounted for in the small-deflection theory. The fraction
of the thecrestical critical stress at which these effects assumse
importance depsnds upon the initial eccentricitles of the plate:

Because the ratio =r/t is a rough measure of the initial eccen-
tricities likely to be present in practical construction, the available
experimental critical compressive stresses were plotted in separate
groups according to the value of r/t of the plate and a separate
curve was faired through each group. (See apperdix B.) The resulis
are summarized in figure 5. .The empirical curves have the same
general trend as the theoretical curves and at high valuesa of 2
approach straizht lines given approximetely by the formula

=|(§.6§ - o.ooos%)z

for values of r/t between 500 .and 1000. (See appendix B.)

The true interaction curve for a given curved plate must pass
through the experimental point for pure campression, which can be
obtained from figure 5, and also through the experimental point for
bure shear, which falls glightly below the theoretical value indi-
cated in figure 3. Because the small-deflection theory gives fairly
accurate results except in the presence of substantial axial com~
pression (reference 12), the theoretical curve must be approximately
correct in the tension and part of the compression range. The true
interaction curve is therefore presumably somevhat like the dashed
curve in figure 6. The absence of experimental data does not permit
accurate plotting of this curve; therefore an spproximate design
curve consisting of two parts {as indicated in fig. 6) is suggested.
One part, applying to the compression rangs, is the parabola passing
throush the points corresponding to the experimental critical com-
pressive stress and the theorstical critical shear strese (obtained
from figs. 5 and 3, respectively). The sgecond part, applying to the
tension range, is the theoretical curve which is essentially the
parabola passing through the points corresponding to the theoretical
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critical stress in pure compression and pure shear (obtained from
figs. b and 3, respectively): :

INTERACTION FORMULAS

The theoretical Intergctlon curve for a long plate with trans-
verse curvature loaded in shear and longitudinal direct stress is
very nearly & parabola passing through the theoretical polnts corre-
sponding to shear alone and to axial compression alone. This parabola
may be expressed in stress-ratio form by. the equation

(»g .t (Rx)m =1

As long plates with transverse curvabure in sxial compression
buckle at a stress considerably less than the theorsetical critical
stresg, the theoretical interasction curve is umsultable Ffor deslgn
purposes vhenever a substantiasl amount of compression 1s present.

In the absence of test data on curved plates buckling under combined
shear and compression, an interaction curve composed of two parts is
Proviaionally recommended for design. This interaction curve is
described by the following equations: For combined shear and com-
pression, o - :

.CRs)the +. (Rx)é¥p ; 1
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and. for combined shear and tension,

(Rs)the * (% n =

Langley Mémorial Aeronautical Laboratory
Katlional Advisory Committes for Asronautics
Lengley Field, Va., March 20, 1947
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APPENDIX A
THREORETICAL SOLUTION

Equation of squilibrium.~ The combinations of shear and direct

exial stress vhich cause long curved plates to buckle may be obtained
by solving the following equation of equilibrium (reference 13):

e 2
Dv”w+§§v“§-l’+ert-§-l+cxt§-2—‘fuo (A1)
re St dx oy dx2

vhere x and y are the coordinates indicated in the following
figure:

Division of equation (Al) by D glves
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where the dimensionless paremeters 2, k

g, and k. are defined by

2 ———
7 = 22\ - 42
rt
K o TP
o =
72D
2
- o5tb
72D
Equation (A2) can be represented by
Qw=0 o (A3)
where Q is defined by the opeyaﬁo,_r_ :
vip- 1072 v-u o b o 2R R 32
' B W2 3x 3y | b2 242

Method of solution.- The edquation of equilibrium may be asolved
by using the Galerkin method as given in reference 1&. In the appli-
cation of this method; egquation A3) is solved by the use of a suitable
series expansion for w as follows: '

Aw=ZamV +;bmw l:. | : (A’l)

In expression (Ah) the functions Vi, Vp, + « - Vy, and Wy, Wy, « o . Wy
individually satisfy the boundary conditions on w bdbut need not satisfy
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the equation of equilibrium. The coefficlents an and ‘bm are
then determined by the equations

b pon | 7
ff Vv dx & = 0
o Jo
b A |
[[Meweses
0 0

‘Whel‘e n = 3.’ 2, 3, . e o Jn

> (a5)

The boundary conditions considered in the present paper arse as
follows: for simply supported edges, W = -a—Q-Y =u=0 and v is
dy2
unrestrained; and for clamped edges, W = -2:1" =v=0 and u 1is
unrestrained. 7

Solution: for plstes with gimply sg.gporte’d edges.- The following
infinite series expansion, which incorporates & get of functions that
is complete (subject to the limitation of periodicity with wave
length 2\ in the longitudinal direction), can be used to represent
exactly the displacement 'w of curved plates with simply supported
. edges: : e ' -

-} [- <}
w = sin 3% Zam sin = . cos Eme sin = (46)
Y ‘ b A b
m=1 X =1

In addition to satisfying the conditlions on w at the edges, expres-
sion (A6) also satisfies the conditions that the axial displacement u
is equal to O and the circumferential dlsplacement v 18 unrestrained
at the edges (see reference 12). Expression (A6) is equivalent to
expression (AL) if
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Y. =sinf-csinﬂ
n A b

> (a7)

"X nwy
Wn = Ccog x—- gin T

Substltution of expressions (A6) ang (A7) into equations (45)
and integration over the limits indicated give

8 B
2, g2)? 122%% p2} - 80Ny m
an(n + ) +,,h(n2+52)2 keyl x L LI
f(AB)

> Bk B -
b (02 . 2)? e SZ SN
nfle « 59 +:3*(n2+f52)2 il 1w

N —

vhere mt n is odd sna

B=2
A ,
n=l, 2_’ 3, LI Y ’ ' -

Equations (A8) have a solution in which the coefficients ay,
and the coefficients b, are not all zero only if the following

determinant of the coefficients of &, and 'bn vanj_.shesz
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'bh b'j b6 see

% 0 -%
0 é‘% 0 .en
2o, o2
0 59- 0 v
0 -%‘i- 0 ..
e
O 0 0 ...
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where
108" 22

ﬂh’ (nz + ;32)2

By a rearrangement of rows and columns, the infinite determinant cen
be factored into the product of two mutually cquivalent infinite subdeter-
minants. The resulting equation, which determines the critical stress
combinations, is

-kxee

M, = -gé- (ne + 52)2 +

a; by a3 b,_l_ as bg .+« by 8y b3 7Y 'b5 ag e
mlllc—sml % 0 % 0 -% .. 0 0 O O O 0O ...
n=2 % %;MQ -g 0 -é—i— o ... 0 0 o0 o0 oo .
n=3| © -?%{;M.a’ —,1{3 ) -32- e 00 0 0O 00 ...
n=h % 0 %3 i;M“ _S_o_ 0 ... 0 0 0 O 0 0 ...
n=5| 0 -32‘—3- 0 _g_o %{;Ms L .. 0 0o 0o 0o o o ..
n=6 % 0 % 0 -]3_-03: -]-'k-;M ¢se O 0 0 0 0 0 ...
O AP
il 0 0 0 0 0 0 ... iuy 2 c; --—.- (; --6-:

73 15 35
2l 0 0 0 0 0 0 .. -% %:42 g 0 %‘-?-L- 0 ves
=3l 0 0 0 0 0 0 .. | 0 .g_ %k-gm?) -%2 0 -%
n=b| © 0 0 0 o} 0 -1115- o} -}-(-_?- -i—s-Mh -g-g 0 s
5| 0. 0 0 0 0 0 ... O -12% 0 529 i}% -33_-?_-
n=6| 0 0 0 0 0 0 ... -é- o - 0 -%9 %k-sﬁé

(@)
N
- e« WP

(A10)
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The first approximation, obtalned fram the second-order deter~
minant (upper left~hand corner of either of the infinite subdeter-
minants), is gilven by

. .leMQ (A11)

The second approximation, cbtained from the third-order deter-
minant, is given by

2 _ M1"’2”13
36
Ml + 9M3

(A12)

The third approximation, obtained from the fourth-order deter-
minent, is glven by

4fs 8\2
ks (7+'2'"5->

Each of these equations shows that for e selected valus of ‘the
curvature parameter Z +the critical combination of stresses which
will cause & long curved plate to buckle depends upon the wave
length. BSince a structure buckles at the lowest stress at which
instabllity can occur, kg is minimized with respect to the wave

length by substituting values of 8 into equations (All), (Al2),
or (Al3) for a chosen value of k, wuntil the minimum value of kg

can be cbtained from a plot of k against p. Table 1 presents

the computed interactlon data; the results are substantially the
same as the results of reference 6.

of 1k 16
(h 5y + —§M Mu+ —-—-M2M3 + -§M3M,_D + MM MM = 0 (A13)

In order to determine the criticel stress coefficlients for the
buckling of a long curved plate loaded in axial compression alons,
equation (Al0) is solved by setting ky equal to zero. In the

resultant equation all the off-diagonal terms are equal to zero.
The solution to this eguation is

11
Qo

MMy . e e M (ALL)
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For the nminimum value of the streas coefficlent that satlisfles equa-
tion (Alhk), the relationship

My = 0 (A15)

must be satisfied. The valus of k, given by equation (A15) is

k, = (52 + 1)2 + 107232 (A16)
2 W.o A2
P ﬂ'(Be + l)

Equation (Al6) shows that the buckling stress is a function of
the wave length of the buckle and the minimum value of k. 1is found

by minimizing k. with respect to B in a manner similar to that
used to find thé minimum value of ¥  in equations (A11) to (A13).
Figure 4 gives the critical axial-compressive-stress ccefficients
Por long curved plates with simply supported edges; the results are

the seame as the results presented in reference 4 for plates with
gimply supported edges.

Solution for plates with clamped edges.- A procedure similar to

that used for plates with simply supported edges may be followed for
long curved plates with clamped edges. The deflection function used
is the following series:

o
A i b b

0

+ cos f—x me:os .(_m_:gﬂu_y_ - cos w] (A7)

=1 b
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Each term of this serles satlsfles the conditions om w at the
edges and in eddltiocn the conditioms that the axial dilsplacement u
is wrestrained and the circumferential displacement v is equal
to O at the edges (see reference 13). In this case,

> (418)

where n=1, 2, 3 . .+ .

After operations corresponding to those carried out for the

case of simply supported edges are performed, the followling simul-
taneous equations resulti:



For n=1

m=2,4,6

m=-1)2 -4 (n+1)2-%

al(%+M2)~a3l\{2+kB me[(q(m-l)a + -(m+l)2 J:O

For n=2

aE(Ml + M3} - aMy + Ky Z by

m=1,3,5

For n=3,4 5 ...
an{Mp-1 + Mne1) - en-gMp-1

(- 1)2 (m - 1)2 (n+ )2 (ms1)2
(m-12-1 m-12-9 (m+1)2-1 (m+ 1)2-

~ pyoMp

(m - 1)8 ) (m+ 1)2 . © (m+ 1)°

)

+ k Zbl: (m - 2)2

- =0
(m-1)2 - (o - 1)2 (m-12-(@+1% m+2)2-(2-1)2 (m+ 1)2- (n+l)2]

vwhere m*n is odd.
For n=1

by (B + M) - b, -k Z ap

!r‘(m ~ 1)2 X 1)2 :'
4

ma k6 |m-12 -k (n+2)2-

FPor na?2

b2(M1+H3)'th‘3“ks ZB ['{m-l)e m-1°  _(@:® o fmr D)7

Far Il=3,,+_,5’ . .
bn(Mn-l + Mpy3) - by

(m-12-1 (m-1)2-9 (m+1)2-1 (m+ 1)2 -

- bnfi-EMn+l

(m - 1)2 (m+ 1)2 . (m + 1)2

J-

N (m - 1)2
ki[( z

m-1)2 - (o - 1)2 (m-1)2-(n+1)2 (m+1)2-(a-12 (m+1)°- (11+1)21l °

wvhere m* n is odd

>(a19)

LHET *ON NI VOVN
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:\""‘(n2 + ﬁ2)2 )

Mn=38%(n2+52)2+ k82

The infinite determinant formed by equations (Al9) can be rearranged
g0 ag to factor into the product of two mubually equivalent infinite sub~
determinants, as in the solution for long curved plates with simply sup-
ported edges. The critical stress combinations are obtained by permitting
one of the subdeterminants to vanish. The resultant equation 1s

8 b, a, by, a5 g
n=1 -]]-;-;(%mg) -iig- -}3;;1\«2 -%‘-5- .: 0 '-g% e
n=2 z;’_% . %;-(Ml-a-M3) -% -13;-—8-M3 % : 0 ...
n=5 0 %2- ‘%;Mh -l%g_g i;(M“Ms) %’%’?
=6 35 o HZE s Bm oRtyw) -

(420)
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The first approximation %o equation (AEO), obtained from the
second-order determinant (upper left~heand cormer of egquation (A20)),
is given by

2
kSQ - (%—.Z) (QMO * Mg)(Ml + M3)_ (A21)

The second approximation, obtained from the third-order deter-
minant, is given by

k2 - (Ml + M3)[Z(2MO +M2)(ME . Mh) ) Mee]
(Bt - @@ @ o)

The third approximation, obtained from the fourth-order deter~
minant, is glven by

R - @G -+ [Ef e 0t
() (o s +19) + (85 0+ G+ )

- () te - w0 + 1) - ()t )

- (@)t ) - ()G + )

- @E s [DE) - (O]

* [%(Ma + 1) + MeMlj {Ml(Ms + M5) + M3M5] =0 (423)

(a22)
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These eguations are golved for valves of Z between O and 30
in a manner similar to that used in the problem of the buckling of
curved plates with simply supported edges - that is, by substituting
values of f into cquations (A21), (A22), or (A23) for each value
of Z and a glven value of k, until the minimum value of kg is

obtained from & plot of B againet corresponding values of k . As

the velue of Z Increases, the higher Fourier components of the
buckle deformation increase in relative importance, and instead of
determinents in the upper left-hand corner determinants farther down
the principal diagonal are used. The computed interachion data are
presented in table 1.

In order to determine the critical stress coefflcients for the
buckling of -a long curved plate in axial compression, eguation (A23)
is solved by setting ks equal 0 zero. The solutlon then is

ot )« s ) ] ¢

Equation (A24) is solved in a mammer similar to that used for
the problem of the buckling of a curved plate with simply supported
edges under axlal compression - that 1s, by substituting values
of B into equation (A2Lk) until the minimum value of k; is found

from a plot of Xk, against B. TFlgure 4 gives the critical axial~

compressive-stress coefficients for long curved plates with clamped
edges, and these wvalues are in substantiasl sgreement with the results
presented in reference 5 for plates of low curvature with clamped
edges.
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APPENDIX B

DETERMINATION OF EMPIRICAL CURVES FOR BUCKLING
OF LONG PLATES WITH TRANSVERSE CURVATURE .

TOADED IN AXTIAL COMPRESSION

Curved plates loaded In axial compression buckle at loads which
are much lower than those predicted by theory (see rsferences 9
to 11). In order to determine the loads at which actual curved
plates would buckle an empirical investigation was carried out.

When plates have appreclable curvature, the critical campres-
sive stresses are virtually independent of the ratio of the axial
length to the circumferential width of the plates, 1f this ratio is
greater than about 1. The test data obtained in various investi-
getions for the buckling of curved rectangular panels having a ratio
of axial length to clrcumferential width greater than 1 were plotted
in Pigures 7 and 8 by using the parameters of the small-deflection
theory. These figures show that as the radius-thiclkmess ratio of
the plates increases the buckling stresses decrease. A series of
curves depending upon the ratio of radius to thickness was there-
fore drawn through the average of the test points; these curves give

the compressive-buckling-stress coefficients for actual curved plates.

At high values of Z +the curves approach a series of straight
lines which are parallel to the thsoretical curve. These straight
lines are functions of r/t and may be approximated by the equa~
tion k, = CZ where C 1s a function of r/t expressed by the

equation C = 0.68 - o.ooos%. This expression for C, plotted in

figure 9, was obtained from experimental results given in.figureszru
and 8. As Z decreascs and approaches zZero, the empirical curves
approach the value of k& = 4 which is the theoretical compressive=

stress coefficiont for the buckling of flat plates with simply sup-
ported edges loaded in longitudinal compression. ({See curves for
simply supported plates in fig. 4.} The empirical curves of figures T
and 8 may therefore be used to determine the compressive buckling
atresses of curved plates with simply supported odges.

In order to determine the stresses that cause curved plates
vith clampod edges to buckle, it is necessary to modify the curves
of figures 7 and 8. The longitudinal loads which cause buckling
are practically independent of edge restraint at large values of Z.
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(See fig. 4.) Flat plates with clamped edges loaded longitudinally
will also buckle at a stress which agrees closely with the theo-
retically predicted value {reference 15). The curves of figures T
and 8 are therefore modified for curved plates with clamped. edges
by falring smooth transitlion curves betwecn the thooretical values
at low valuse of the curvature paramebter Z and the empirical
values established for the buckling of curved plates at high values
of Z. The results are shown as dasghed curves in flgure 5.
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TABLE 1

THEORETICAL COMBINATIONS OF SHEAR-STRESS AND DIRECT~AXIAT.~-STRESS

COEFFICIENTS AND CORRESPONDING VALUES OF p2

Firset Second Third
7 X aprroximation approximation approximation
o
2" 2 2
kg B kg 8 kg B
Curved pletes with simply supported sdges
5 -3 7.80 0.38 7.35 | 0.45 7.3 0.h47
-1l 6‘67 ‘h’7 ) 613"" 052 """ .-
1 5.34 .60 5.13 63 | =-m-- -
3 3.60 <76 3.52 T8 | mmme- ————
b 2.35 +90 2.33 50 | mmme- -
L-76 -265 l.O -265 l-O ----- L
10 -k 8.95 .28 8.45 3k 8.45 .33
-2 8.08 30 | 7.63 .39 | 7.63 +ko
2 5.92 L1 5.67 A7 memee ————
L k.55 53 L.h1 57 | emmea ————
2 3.71 .60 3.62 - T
6 2.65 73 | 2.61 75 | e ————
T.03 56 .98 .56 98 | meee- ———
30 -5 12.58 .10 11.94 12 11.92 12
-2 11.73 11 11.18 Ao | emee- ————
> 9.58 12 9.2L 12 | emme- ————
10 "~ 7.8 Jd2 T..60 I - ey ———
15 5.67 »12 5.58 12 | mmee- ————
18 3.98 12 3.95- A2 | meeee -———-
et . 55 Jd2 .55 B T- TR -—--
100 -10 21.80 .03 20.61 .0k 20,61 Ok
=2 20.7 03 | 19.83 W03 | mem=- ———
20 16.54 .03 16.04 03 | mem=e- ————
4o 12.57 .03 12.35 03 | =eme- ———
50 10.13 .03 10.0k 03 | w=e-- ———
60 7.15 .03 7.1 03 | mme-- .-
69-5 1485 003 ) 1.85 ,03 | eemme- -
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PABLE 1 - Continued

NACA TN No. 1347

THECRETICAL COMBINATIONS OF SHEAR~STRESS AND DIRECT-AXTAL-SIRESS

COEFFICTENTS AND CORRESPONDING VALUES OF B¢ - - Continued

First Second Third
7 - approximation | approximstion | approximation
2
I B kg B2 kg B
Curved plates with simply supported edges
300 | =100 2.9 0.01 40.58 | 0.01 40.53 | 0.01
-50 38.8 01 . | 36.90 OL | memmee | ameee
0 3434 01 | 32.95 QL | mmeem | e
50 29.50 [ .01 28.58 Ol | ==m=m | emee-
100 - ok, 10 .01 23.60 OL | mmmee | emme-
150 7.5 .01 17.3 o N B Y
210 1.8 01 1.8 01 | mme=me | wmmaa
1000 | =200 . | 72.0 .003 | 68.65 003 | 68.55 .003
0 62.6 003 | 60.16 .003 | 60.03 .003
200 52.0 <003 | 50.5. .003 | 50.34 .003
400 39.5 .003 | 38.7 003 | mmmmm | wemee
600 22.6 003 | 22.k4 . 003 | mwmee | mmmas
700 3.6 .003 3.6 003 | ewmme | wemea
Curved plates with clamped odges
1 -5 12.78 | 1.03 | 12.11 | 1.2 11.91 | 1.23
0 9.59 | 1.kl G334 | 1.5 | wemmmm | mmee-
1 8.88 | 1.50 8.66. | 1.6 | ====w | ==wa-
3 T.19 | 1.75 7.15 | 1.8 | wemen | mmvea
5 5.16 | 2.00 5,15 | 2.1 | =mmw= | ==---
7 1.87 | 2.28 1.09 | 2.3 | =mmmm | meme-
7.00} 0 230 | mwmme | wmemm | cmmen | e
5 "6 l)'['123 1.10 13-111- 1-26 ----------
0 10.46 | 1.56 10.00 | 1,67 | ==m=n | =mem-
2 8,94 | 1.8 8,69 | 1.80 | wmmmn | mmemne
L 7.20°| 2.07 7.12 | 2.08 | ==eem | mveua
6 | 5.06 | 2.35 5.06 | 2.35 | =w=me== | =m-u-
. T 2.73 | 2.58 2.,7 | 2.60 cmmme | mmmea
7.97 0 275 | wmmee | oemean | emeee | e
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TABLE 1 - Concluded
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THEORETICAL COMBINATIONS OF SHEAR-STRESS AND DIRECT-AXIAL~STRESS

COEFFICIENTS AND CORRESPONDING VALUES OF B2 - Concluded
First Second Third
7 X approximation approximation approximation
X
kg p2 kg p2 kg B2
Curved plates with clamped odges
10 -7 I7.13 | 1.30 | 14.84% | 1.50 | ~==-- ———-
o 12.69 | 1.92 | 11.4k9 | 2.00 | ===-- ————
1 11.96 | 2.05 10.93 2,13 | =e=-- -
5 8.65 | 2.50 8.27 | 2.60 | ===== -
7 6-62 3-00 6-52 2-95 ----- - -
9 L.00 | 3.34 3.98 | 3.36 | =m==- ——=-
10.14 0 375 | =mee- R T -
30 -15 38.92 2.00 23.85 1.65 23.22 1.8
0 28.23 3.32 18.44 2.65 18.10 2.75
5 23.86 4.20 16.21 3.25 | mmem- ————
10 18.93. | 5.20 | 13.64 | L.oo | ~=--- S
15 13.32 6.50 10.51 5,50 | wwme- ————
18 9.50 | 7.ko 8.18 | 6.70 | =---- ——e-
2-1 1’--85 8-60 1‘]’072 8-35 ————— -
22.39| 0 Q. | wmma- ceee | mmmea ————
1000 250 105 25 92.5 Sh | e=e-- ————
Loo 97.5 .22 78 56 | eme-- ———-
500 90 - 68.5 62 62.5 1.k
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Figure 1.- Theoretical combinations of stress coefficients for long
plates with transverse curvature having simply supported edges
i loaded in shear and direct axial stress. (Curvefor Z =0
obtained from reference 7.)
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Figure 2,- Theoretical combinations of stress coefficients for long
plates with transverse curvature having clamped edges loaded in
shear and direct axial stress. (Curvefor Z =0 obtained from
reference 7.)
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Figure 3.~ Theoretical critical-shear~stress coefficients for long
_ plates with transverse curvature having either simply supported or

clamped edges.
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Figure 4.~ Theoretical compressive-stress coefficients for long
plates with transverse curvature having either simply supported or
clamped edges,
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Figure 5.- Design and theoretical compressive-stress coefficients
for long plates with transverse curvature having either simply
supported or clamped edges.
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Figure 6.- Comparison of theoretical interaction curve, probable
empirical interaction curve (exact location somewhat uncertain),
and empirical interaction curve recommended for design of curved
plates buckling under combined action of axial compression and
shear.
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Figure 7.~ Test points and design curves for plates having radius-
thickness ratios of 500 and 1000 compared with theoretical curve
for plates with simply supported edges loaded in axial compression,
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Figure 8,- Test points and design curve for plates having radius-
thickness ratio of 700 compared with theoretical curve for plates
with simply supported edges loaded in axial compression,
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Figure 9.- Empirical coefficient for computing compressive strength
of long plates with transverse curvature having moderate and high
values of Z.
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